If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-51x+55.25=0
a = 8; b = -51; c = +55.25;
Δ = b2-4ac
Δ = -512-4·8·55.25
Δ = 833
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{833}=\sqrt{49*17}=\sqrt{49}*\sqrt{17}=7\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-7\sqrt{17}}{2*8}=\frac{51-7\sqrt{17}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+7\sqrt{17}}{2*8}=\frac{51+7\sqrt{17}}{16} $
| (7x-14)=(2x-11)+(3x+17) | | 2x+7(x+1)=32(x+1)-25 | | 32x^2-204x+221=0 | | 10+5x4=40 | | 3x–5(x–3)=4(x–2) | | 5(m-2)+m=6(m-4 | | 28=-4u+2(u+8) | | 3x^2+7=82 | | 2x+5+8x=75 | | y-60=20 | | (2x+16)+(6x+2)+(4x-6)=180 | | (6x+8)+(5x-15)+(2x-8)=180 | | 5(b-2)=3b+7 | | (8x+1)+(x-10)+(4x-6)=180 | | 1/5x-7/2=-3x-3/5 | | (x-1)=1.5x(x+1) | | 15x=8=3x-4 | | 40=(2/3)*2p+18 | | 4(x-3)=2×+8 | | 8^2+b^2=24^2 | | -75+6x=-8x+135 | | 12.4=8u=8.8 | | x(x+6)=(x+3)^2 | | 10(9+n)=-70 | | 2x2-6x=80 | | 5(2w+1)/6=10 | | x+5=18x+6 | | y-3.2=-5.6 | | y-7/5=-3/5y-2/3 | | (4x+8)=(2x+8) | | 3.63+d=105 | | (8x-12)=(6x+14) |